

Physical Step Sequencer
David Schofield

INTRODUCTION!
This project was completed as an assignment for my Interaction Design class (ARTM3220)
taught by Professor Andrew Ames. Our objective was to create a "Meaningful Controller,"
which met the following criteria:

Objectives:!
1. Create a physical interface for a single piece of existing or original software.
2. Improve prototyping skills and enhance object making techniques.
3. Continue to practoce user research and testing.
4. Implement basic electronic skills like soldering and wiring switches.
5. Utilize a micro-controller or micro-processor and explore various approaches to

programming them.

Requirements:!
1. Vojrvfoftt: It must not already exist;
2. Joufsbdujpo: It must be good for a particular type of game or software;
3. Sfbmjuz: It should be constructed of off-the-shelf parts, including other controllers;
4. Qmbugpsn: It must connect to a Mac or PC;
5. Evsbcjmjuz: It must last during the opening reception of the gold show or senior

showcase;

I did deviate from a couple of these requirements, opting to go with a self contained
interface/program that didn't rely on an external computer.

THE IDEA!
My idea was to create a physical step sequencer. A step sequencer is essentially a device that
allows the creation of patterns in music, usually used with drum sounds, by allowing users to
decide which sounds should be played at which part of a loop.

By having an physical step sequencer, users would be able to interact with the beat directly,
and by having it playing continuously while the user arranges the pattern, they get to hear the
beat evolve.

http://andrewyames.com/

The actual interface I set out to build revolved around placing metal balls on pegs mounted on
a wooden board. I chose this because I think materials play a big role in a user's experience,
and both nice wood and polished metal evoke a sense of quality.

PROOF OF CONCEPT!
My first step was to create a proof of concept for my idea, in order to see if it was feasible
and work out as many bugs as possible before construction.

For this initial prototype, I elected to create a model in Autodesk's 123D Circuits simulator,
since it also allows you to simulate an Arduino and write code for it.

Click here to view the latest iteration of my simulated proof of concept.!

The simulator revealed my first major bug. When multiple connections were happening, the
rows were reading erratically, often with all of them returning true. After examining the
problem and tracing where the electricity would be going in my sketchbook, I discovered that I
was experiencing electrical back-flow, where electricity would "piggy-back" on other rows and
columns to create erroneous readings. The solution to this was to put a diode on each set of
pegs, allowing electricity to only flow onto the rows needed.

Once I had a working proof of concept and most of the software written in the simulator, it
was time to start collecting materials.

THE INGREDIENTS!
1. Arduino Mega - The brains of the device.
2. R-606 Vintage Drum Synthesizer chip - The voice of the device. This chip takes trigger

and volume inputs on different pins, and outputs an audio signal. It emulates the
Roland TR-606 This awesome chip and more are made in Sweden by DSP Synths.

3. 1" Steel Ball Bearings
4. White LEDs - These illuminate the current step.
5. 1N4148 Signal Diodes - To solve the backflow problem.
6. Potentiometers - To serve as volume controlls for each instrument.
7. Hookup wire
8. Assorted resistors, capacitors, and jacks - To build the output circuit for the voice chip,

condition power to the LEDs, and act as pulldown resistors (described later).
9. Plywood
10. Screws (2/switch), Nuts (6/switch), and Washers (2/switch)

https://123d.circuits.io/
https://123d.circuits.io/circuits/1775194-step-sequencer-v3
https://www.arduino.cc/en/Main/arduinoBoardMega2560
http://www.dspsynth.eu/index.htm
https://www.wikiwand.com/en/Roland_TR-606
http://www.amazon.com/Inch-Chrome-Steel-Bearing-Balls/dp/B007B2AA0K
https://www.adafruit.com/products/754
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_36038_-1

CONSTRUCTION!
The physical construction proved to be more involved than I first thought. The process began
with making the structural parts of the sequencer, cutting down plywood and other wood
parts to create it.

After that, I prepared the front face of the board by sanding and staining it. Then came drilling
all the holes for the screws and using a router to cut out recesses for the potentiometers to
sit in.

After I got all the screws into the holes I drilled, but before I started with wiring, I made up a
quick minimal viable product test, using a simple Arduino sketch and a single pair of screws
with a ball.

It was here I encountered my second major bug.!

When the ball was in place, the sensor returned "true". When the ball was not in place, the
sensor returned... a seemingly random and always changing steam of values. This was my
first encounter with the "floating pin" problem, where an Arduino reading a value off a pin that
isn't tied to voltage or ground picks up huge amounts of interference, and can return any
value, unpredictably. To remedy this problem, a "Pullup" or "Pulldown" resistor is used. This is
a high-resistance resistor tied to the pin and to voltage (Pullup) or ground (Pulldown), in order
to give the pin a "default" state. Because of the resistance, the default value is overridden by
any other inputs.

On the subject of wiring, there were two design choices that saved me a significant amount of
work. The first was the screw and nut setup, so instead of making solder joints, I just clamped
down the bare ends of a wire between two nuts. The second choice was that for the columns,
instead of having many short wire sections, I stripped the entire wire and just soldered to that,
like a rail.

Uif!S.717!Wpjdf!Dijq!

